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Abstract

Objective: We explored various prognostic factors of motor outcomes in

corticosteroid-naive boys with Duchenne Muscular Dystrophy (DMD).

Methods: The associations between parent-reported neurodevelopmental con-

cerns (speech delay, speech and language difficulties (SLD), and learning diffi-

culties), DMD mutation location, and motor outcomes (6-minute walk distance

(6MWD), North Star Ambulatory Assessment (NSAA) total score, 10-meter

walk/run velocity, and rise from floor velocity) were studied in 196

corticosteroid-naive boys from ages 4 to less than 8 years. Results: Participants

with SLD walked 25.8 fewer meters in 6 minutes than those without SLD

(p = 0.005) but did not demonstrate statistical differences in NSAA total score,

10-meter walk/run velocity, and rise from floor velocity. Participants with distal

DMD mutations with learning difficulties walked 51.8 fewer meters in 6

minutes than those without learning difficulties (p = 0.0007). Participants with

distal DMD mutations were slower on 10-meter walk/run velocity, and rise

from floor velocity (p = 0.02) than those with proximal DMD mutations. Par-

ticipants with distal DMD mutations, who reported speech delay or learning

difficulties, were slower on rise from floor velocity (p = 0.04, p = 0.01) than

those with proximal DMD mutations. The mean NSAA total score was lower in

participants with learning difficulties than in those without (p = 0.004). Inter-

pretation: Corticosteroid-naive boys with DMD with distal DMD mutations

may perform worse on some timed function tests, and that those with learning

difficulties may perform worse on the NSAA. Pending confirmatory studies,

our data underscore the importance of considering co-existing neurodevelop-

mental symptoms on motor outcome measures.

Introduction

Dystrophin—the protein product of the dystrophin gene

(DMD)—plays vital roles as a membrane scaffold and sta-

bilizer in skeletal and cardiac muscles, and in synaptogen-

esis and cell signaling pathways in the brain.1–5 Mutations

in DMD cause Duchenne Muscular Dystrophy (DMD),

an X-linked multi-system disease characterized by pro-

gressive skeletal muscle wasting and weakness, diaphrag-

matic weakness, heart failure, neurodevelopmental co-

morbidities, and cognitive impairments.6 In the brain,

full-length and shorter dystrophin isoforms are tran-

scribed from unique exons. Distal DMD mutations

including nucleotides 3’ DMD as well as DMD intron 44

have been shown to affect the expression of shorter dys-

trophin isoforms (Dp140, Dp116, and Dp71).7

In recent years, there has been greater appreciation of

the neurodevelopmental symptoms in DMD. Rates of

autism spectrum and attention-deficit hyperactivity disor-

ders are 3 to 4 times higher in DMD than in the general

population7–15; these symptoms affect infant-parent bond-

ing, schooling, and social relationships.16 Nearly 100% of

boys with DMD have impairment in cognitive flexibility,

big-picture thinking and planning, collectively called exec-

utive function,7 which contribute to nearly 50% of devel-

opmental gains in intellectual function during
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childhood.17 Not surprisingly, parents report that these

cumulative neurodevelopmental symptoms interfere with

schooling, peer relationships, and development of self-

efficacy skills.16 Further, we and others have shown that

speech delay is more common in DMD than in the gen-

eral population.13,14,19 Our prior work from Finding the

Optimal Regimen for Duchenne Muscular Dystrophy

(FOR-DMD) study showed that 38% of the enrolled boys

reported speech delay, and this symptom was more com-

mon in boys with distal DMD mutations compared to

those with proximal DMD mutations.19

Co-existing neurodevelopmental symptoms in DMD

appear to be associated with worse long-term motor,

respiratory, and cardiac outcomes. A retrospective study

analyzed data from 75 corticosteroid-naive boys with

DMD followed longitudinally over a 10-year period from

a single national neuromuscular referral hospital.18 A sub-

group of boys (n = 15) whose initial presenting symptom

of DMD was “psychomotor delay” walked independently

later (mean 20 months, SD 7.9 months) and lost ambula-

tion earlier (mean 9 years, SD 1.6 years) than the sub-

group of boys who presented with “pure motor delay”

(n = 16); the latter group walked independently at a

mean of 15 months (SD 3.8 months) and lost ambulation

at a mean of 12.6 years (SD 2 years). Likewise, both car-

diac and respiratory declines occurred earlier in the sub-

group presenting with “psychomotor delay.” Five of the

15 boys in this subgroup had a left ventricular ejection

fraction of less than 55% prior to 10 years of age, com-

pared to none of the boys in the “pure motor delay” sub-

group. In addition, mean forced vital capacity was 65% at

10 years of age in the subgroup presenting with “psycho-

motor delay,” compared to 80% at 10 years of age in the

subgroup presenting with “pure motor delay.”

In this study, we explored whether neurodevelopmental

concerns—namely speech and language delay (SLD),

speech delay, and learning difficulties—are prognostic of

pretreatment motor function in DMD. We postulated that

young corticosteroid-naive boys with neurodevelopmental

concerns or with distal DMD mutations would demon-

strate worse performance on motor function tests than

those without neurodevelopmental concerns or with

proximal DMD mutations.

Methods

Study design and participants

The FOR-DMD trial enrolled 196 corticosteroid-naive

boys between the ages of 4 and <8 years in five countries

with the aim of comparing three different corticosteroid

regimens with respect to efficacy and safety. Detailed

information on the rationale and study design has been

previously published.20 Briefly, the inclusion criteria for

the FOR-DMD trial were as follows: corticosteroid-naive

boys with genetically-confirmed DMD mutation, ages

4 years to less than 8 years, able to arise independently

from floor and able to provide reproducible forced vital

capacity (FVC) measurements, as well as parent or guard-

ian able to give written consent and comply with study

visits and drug administration plan. The study was con-

ducted in accordance with the Declaration of Helsinki

(2000) and the Principles of Good Clinical Practice. Writ-

ten informed consent was obtained from all parents/legal

guardians of the study participants prior to commence-

ment of study procedures. This clinical trial is registered

under ClinicalTrials.Gov (NCT01603407).

Study measures

In this study, neurodevelopmental concerns were defined

broadly. We extracted parent-reported concerns of SLD

and the age at which the child first spoke in full sentences

(language acquisition) from the medical history form

completed at the screening visit. SLD was queried as pre-

sent, absent, or unknown. Speech delay was defined to be

present if the parent had reported that the age of first

speaking in full sentences was later than 42 months.21

Learning difficulties were reported as present, absent, or

unknown by parent. Motor function outcomes obtained

at the baseline visit (or screening visit if the value at the

baseline visit was missing) included six-minute walk dis-

tance (6MWD), North Star Ambulatory Assessment

(NSAA) total score, 10-meter walk/run velocity, and rise

from floor velocity. All of these tests were administered

and recorded by a trained study-team physical therapist.

DMD mutation data

DMD mutation data were available for 193 of 196 partici-

pants who were categorized as having proximal DMD

(proximal to 5’ DMD intron 44) or distal DMD (muta-

tions in 3’ DMD including intron 44) mutations.

Statistical analysis

For each of the motor function outcomes, three analyses

of covariance models were fit, one that included SLD, a

second that included speech delay, and a third that

included learning difficulties; all models included DMD

mutation and age. These models were used to estimate

differences in adjusted mean outcome between boys with

distal versus proximal DMD mutations, between boys

with and without SLD, between boys with and without

speech delay, and between boys with and without learning

difficulties. The interactions between DMD mutation type
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and either SLD, speech delay, or learning difficulties were

examined by adding the respective interaction term to the

appropriate model. Because the models with SLD

included larger sample sizes than the models with speech

delay and learning difficulties, the results concerning dif-

ferences between those with distal versus proximal DMD

mutations are interpreted using the former model. Due to

the exploratory nature of the analyses, no corrections

were performed for multiple comparisons unless an inter-

action was identified, in which case subgroup compari-

sons incorporated a Tukey–Kramer adjustment.

Results

Demographic and clinical characteristics

A total of 196 participants were enrolled in the FOR-

DMD trial. The mean age at time of baseline motor func-

tion assessment was 5.8 years (SD 1.0) were enrolled in

the FOR-DMD study. Parent-reported SLD was reported

in 75 of 195 participants (38%; data missing in 1 partici-

pant), and speech delay was reported in 18 of 167

participants (11%; data missing in 29 participants). In the

167 participants with available data on speech and lan-

guage acquisition, speech delay was reported in 16 of the

67 participants with SLD, and SLD was reported in 16 of

the 18 with speech delay. Learning difficulties were

reported in 50 of 181 boys (28%). Among the 48 partici-

pants for whom the severity of learning difficulties was

reported, the severity was mild in 69% (33/48), moderate

in 29% (14/48), and severe in 2% (1/48). The mean age

of participants with and without SLD, and with and with-

out speech delay was the same (5.8 years). The mean ages

of participants with and without learning difficulties were

6.2 and 5.8 years, respectively. The numbers of partici-

pants with proximal DMD versus distal DMD mutations

were 88 and 105, respectively. The mean ages of partici-

pants with proximal versus distal DMD mutations were

5.9 and 5.8 years, respectively.

6MWD

Results of the analysis of covariance models for 6MWD

are presented in Table 1. Those with SLD had an adjusted

Table 1. Associations between 6-minute walk distance and DMD mutation, speech and language difficulties, speech delay, and learning

difficulties.

(a) Model with DMD mutation, speech and language difficulties, and age

Mean 6MWD (m) Mean 6MWD (m)

DMD Mutation
Group difference

(95% CI) p-value

Speech and

language difficulties
Group difference

(95% CI) p-valueDistal Proximal Yes No

325.6 339.0 �13.4 (�30.9, 4.2) 0.13 319.4 345.2 �25.8 (�43.7, �7.8) 0.005

(b) Model with DMD mutation, speech delay, and age

Mean 6MWD (m) Mean 6MWD (m)

DMD mutation
Group difference

(95% CI) p-value

Speech delay1
Group difference

(95% CI) p-valueDistal Proximal Yes No

317.7 336.4 �18.7 (�38.4, 1.0) 0.06 318.8 335.3 �16.6 (�47.6, 14.5) 0.29

(c) Model with DMD mutation, learning difficulties, interaction between DMD mutation and learning difficulties, and age

Group (DMD mutation/learning difficulties)

Distal/yes Proximal/yes Distal/no Proximal/no

Mean 6MWD (m) 290.6 339.9 342.4 346.7

Difference vs. distal/yes group 49.3 51.8 56.1

95% CI for difference2 (1.6, 96.9) (17.6, 86.0) (22.8, 89.4)

p-value2 0.04 0.0007 0.0001

6MWD, six-minute walk distance; CI, confidence interval.
1Speech delay was defined as age first speaking in full sentences >42 months.
2Adjusted for all six possible pairwise group comparisons using the Tukey–Kramer method; differences among the proximal/yes, distal/no, and

proximal/no groups were not statistically significant (p > 0.97).
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mean 6MWD of 319.4 m compared to 345.2 m in those

without SLD (group difference = �25.8 m, 95% confi-

dence interval [CI] -43.7 to �7.8, p = 0.005). This differ-

ence was consistent between those with distal (�25.1 m)

and proximal (�26.8 m) DMD mutations (p = 0.93 for

the interaction between SLD and DMD mutation type).

The difference in adjusted mean 6MWD between those

with distal versus proximal DMD mutations was �13.4 m

(95% CI �30.9 to 4.2, p = 0.13; Fig. 1, left). The differ-

ence in adjusted mean 6MWD between those with and

without speech delay was �16.6 m (95% CI �47.6 to

14.5, p = 0.29). In the model with learning difficulties,

there was an interaction between learning difficulties and

DMD mutation type (p = 0.03), with the adjusted mean

6MWD being lower in those with distal DMD mutations

and learning difficulties (291 m) than in those in the

other three groups (adjusted mean 6MWD ranging from

49.3 to 56.1; Table 1, Fig. 1, right).

Ten-meter walk/run velocity

Results of the analysis of covariance models for 10-meter

walk/run velocity are presented in Table 2. Differences in

adjusted mean 10-meter walk/run velocity between those

with (1.72 m/sec) and without (1.67 m/sec) SLD

(p = 0.34), and between those with (1.72 m/sec) and

without (1.68 m/sec) speech delay (p = 0.68), were not

significant. Those with a distal DMD mutation had an

adjusted mean velocity of 1.63 m/sec compared to

1.76 m/sec in those with a proximal DMD mutation

(group difference = �0.13 m/sec, 95% CI �0.24 to

�0.02, p = 0.02; Fig. 2, left). This difference was slightly

Figure 1. Boxplots of 6-minute walk distance in meters by DMD mutation (proximal, distal) (left), and interaction between DMD mutation and

learning difficulties (right). The line inside the box represents the median, and the circle inside the box represents the mean. The ends of the

boxes represent the 25th and 75th percentiles of the distribution; the lines extending from the boxes indicate the range of the data, with the

exception of outlier values (indicated by circles) that are more than (1.5 9 interquartile range) from the nearest quartile.
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larger in those with SLD (�0.24 m/sec) than in those

without SLD (�0.07 m/sec), but the interaction between

the location of DMD mutation and SLD was not signifi-

cant (p = 0.13). The difference in adjusted mean velocity

between those with (1.60 m/sec) and without (1.72 m/

sec) learning difficulties was �0.12 m/sec (95% CI �0.25

to 0.01, p = 0.07).

Rise from the floor velocity

Results of the analysis of covariance models for rise from

the floor velocity are presented in Table 3. Differences in

adjusted mean rise from the floor velocity between those

with (0.184 rise/sec) and without (0.187 rise/sec) SLD

(p = 0.77), and between those with (0.161 rise/sec) and

Table 2. Associations between 10-meter walk/run velocity and DMD mutation, speech and language difficulties, speech delay, and learning

difficulties.

(a) Model with DMD mutation, speech and language difficulties, and age

Mean 10-meter walk/run velocity (m/sec) Mean 10-meter walk/run velocity (m/sec)

DMD mutation
Group difference

(95% CI) p-value

Speech and

language

difficulties
Group difference

(95% CI) p-valueDistal Proximal Yes No

1.63 1.76 �0.13 (�0.24, �0.02) 0.02 1.72 1.67 0.05 (�0.06, 0.17) 0.34

(b) Model with DMD mutation, speech delay, and age

Mean 10-meter walk/run velocity (m/sec) Mean 10-meter walk/run velocity (m/sec)

DMD Mutation
Group difference

(95% CI) p-value

Speech delay1
Group difference

(95% CI) p-valueDistal Proximal Yes No

1.64 1.76 �0.12 (�0.24, 0.00) 0.05 1.72 1.68 0.04 (�0.15, 0.23) 0.68

(c) Model with DMD mutation, learning difficulties, and age

Mean 10-meter walk/run velocity (m/sec) Mean 10-meter walk/run velocity (m/sec)

DMD mutation
Group difference

(95% CI) p-value

Learning

difficulties
Group difference

(95% CI) p-valueDistal Proximal Yes No

1.61 1.71 �0.11 (�0.22, 0.01) 0.06 1.60 1.72 �0.12 (�0.25, 0.01) 0.07

CI, confidence interval.
1Speech delay was defined as age first speaking in full sentences >42 months.

Figure 2. Boxplots of motor outcomes by DMD mutation. Ten-meter walk/run velocity (left), rise from the floor time (middle), and NSAA (right).

The line inside the box represents the median, and the circle inside the box represents the mean. The ends of the boxes represent the 25th and

75th percentiles of the distribution; the lines extending from the boxes indicate the range of the data, with the exception of outlier values

(indicated by circles) that are more than (1.5 9 interquartile range) from the nearest quartile.
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without (0.189 rise/sec) speech delay (p = 0.16), were not

significant. Those with a distal DMD mutation had an

adjusted mean velocity of 0.171 rise/sec compared to

0.199 rise/sec in those with a proximal DMD mutation

(group difference = �0.028 rise/sec, 95% CI �0.052 to

�0.005, p = 0.02; Fig. 2, center). This difference was

slightly larger in those with SLD (�0.040 rise/sec) than in

those without SLD (�0.022 rise/sec), but the interaction

between DMD mutation type and SLD was not significant

(p = 0.47). The difference in adjusted mean velocity

between those with (0.169 m/sec) and without (0.189 m/

sec) learning difficulties was �0.020 rise/sec (95% CI

�0.047 to 0.006, p = 0.14).

NSAA total score

Results of the analysis of covariance models for NSAA

total score are presented in Table 4. No differences in

adjusted mean scores were apparent between those with

distal versus proximal DMD mutations (Fig. 2, right),

between those with and without SLD, and between those

with and without speech delay. The mean NSAA total

score was lower in those with reported learning difficul-

ties (19.5) than in those without learning difficulties

(22.2) (group difference = �2.7, 95% CI �4.6 to �0.9,

p = 0.004).

Discussion

DMD is a disease caused by mutations in a single gene;

yet, heterogeneity in clinical presentation, disease severity,

and disease progression are well-documented.22–31 Fur-

ther, genetic modifiers as well the beneficial effects of oral

corticosteroids—the standard-of-care—in DMD32 signifi-

cantly alter the trajectory of disease course. Given the

resource-intense nature of clinical trials in DMD, and sev-

eral Phase 2/3 clinical trials failing to demonstrate a treat-

ment effect on the primary outcome measure,33 better

understanding of prognostic factors that contribute to

disease heterogeneity can help not only clinical trial

design but can inform patient care and management.

Our objective with this study was to explore prognostic

factors of motor outcomes related to broadly-defined

neurodevelopmental concerns (SLD, speech delay,

Table 3. Associations between rise from the floor velocity and DMD mutation, speech and language difficulties, speech delay, and learning

difficulties.

(a) Model with DMD mutation, speech and language difficulties, and age

Mean rise from the floor velocity (rise/sec) Mean rise from the floor velocity (rise/sec)

DMD mutation

Group difference (95% CI) p-value

Speech and

language

difficulties

Group difference (95% CI) p-valueDistal Proximal Yes No

0.171 0.199 �0.028 (�0.052, �0.005) 0.02 0.184 0.187 �0.004 (�0.027, 0.020) 0.77

(b) Model with DMD mutation, speech delay, and age

Mean rise from the floor velocity (rise/sec) Mean rise from the floor velocity (rise/sec)

DMD mutation

Group difference (95% CI) p-value

Speech delay1

Group difference (95% CI) p-valueDistal Proximal Yes No

0.162 0.188 �0.025 (�0.050, �0.001) 0.04 0.161 0.189 �0.028 (�0.067, 0.011) 0.16

(c) Model with DMD mutation, learning difficulties, and age

Mean rise from the floor velocity (rise/sec) Mean rise from the floor velocity (rise/sec)

DMD Mutation

Group difference (95% CI) p-value

Learning

difficulties

Group difference (95% CI) p-valueDistal Proximal Yes No

0.164 0.194 �0.030 (�0.054, �0.006) 0.01 0.169 0.189 �0.020 (�0.047, 0.006) 0.14

CI, confidence interval.
1Speech delay was defined as age first speaking in full sentences >42 months.

2290 ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Motor Function in Duchenne Muscular Dystrophy M. Thangarajh et al.



learning difficulties) as well as DMD genotype in

corticosteroid-naive boys with DMD. We found that

those with SLD walked an average of 26 fewer meters in

the 6MWD compared to those without SLD but there

were no significant differences between those with and

without SLD with respect to NSAA total score and timed

motor function tests. With regard to DMD mutation

location and motor outcomes, those with distal DMD

mutations walked an average of 19 fewer meters in the

6MWD compared to those with proximal DMD muta-

tions, and were slower in 10-meter walk/run velocity and

rise from the floor velocity, but did not demonstrate sig-

nificant differences in NSAA total score compared to

those with proximal DMD mutations. With respect to

learning difficulties and functional outcomes, we observed

that those with distal DMD mutations and learning diffi-

culties walked an average of 49–56 fewer meters in the

6MWD than those with proximal DMD mutations or no

learning difficulties. Also, those with learning difficulties

had a lower mean NSAA total score than those without

learning difficulties.

Our reported findings of associations between perfor-

mance on timed function tests and DMD mutation loca-

tion are congruent with published literature. Chesshyre

et al. recently reported associations between DMD muta-

tion location, NSAA scores, and intelligence quotient

(IQ).34 While their stratification based on DMD mutation

location was different from ours, those with most distal

DMD mutations showed worse performance compared to

those with proximal DMD mutations. The mean NSAA

total score and mean timed functional tests at age 5 were

lowest in research participants with distal DMD muta-

tions. Furthermore, NSAA scores were lower by a mean

of 2 points in those with intellectual deficit (intelligence

quotient two standard deviations below the mean) com-

pared to those with no intellectual deficit. In our study,

all participants were corticosteroid-naive whereas nearly

90% of the cohort reported by Chesshyre et al. received

oral corticosteroids.

What are the mechanisms that mediate the association

between DMD mutation location and the effect of shorter

dystrophin isoforms on functional test performance? A

lack of task comprehension and attentional influence on

functional tests have been reported.35,36 While it is clear

that “verbal encouragement” improves performance on

the 6MWT, this evidence comes from a well-designed

study conducted on older adults.37 In our current analysis

and earlier publication from the FOR-DMD trial,19 we

Table 4. Associations between North Star Ambulatory Assessment total score and DMD mutation, speech and language difficulties, speech delay,

and learning difficulties.

(a) Model with DMD mutation, speech and language difficulties, and age

Mean NSAA total score Mean NSAA total score

DMD mutation
Group difference

(95% CI) p-value

Speech and

language

difficulties
Group difference

(95% CI) p-valueDistal Proximal Yes No

21.0 21.7 �0.7 (�2.3, 0.9) 0.39 21.1 21.6 �0.5 (�2.2, 1.1) 0.51

(b) Model with DMD mutation, speech delay, and age

Mean NSAA total score Mean NSAA total score

DMD mutation
Group difference

(95% CI) p-value

Speech delay1
Group difference

(95% CI) p-valueDistal Proximal Yes No

20.7 21.3 �0.6 (�2.4, 1.1) 0.48 20.6 21.3 �0.7 (�3.5, 2.1) 0.64

(c) Model with DMD mutation, learning difficulties, and age

Mean NSAA total score Mean NSAA total score

DMD mutation
Group difference

(95% CI) p-value

Learning difficulties
Group difference

(95% CI) p-valueDistal Proximal Yes No

20.6 21.0 �0.4 (�2.0, 1.2) 0.61 19.5 22.2 �2.7 (�4.6, �0.9) 0.004

CI, confidence interval; NSAA, North Star Ambulatory Assessment.
1Speech delay was defined as age first speaking in full sentences >42 months.
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found only 8% of participants reporting attentional diffi-

culties, though a formal diagnosis of ADHD is not always

established prior to age 6. It is possible that mild atten-

tional difficulties are undetected or under-reported in this

age range. Future clinical trials in DMD could consider

additional nonmotor attention assessment to understand

whether attentional difficulties confound motor

assessment.

A neurodevelopmental symptom that has consistently

been reported in DMD is SLD. Interestingly, the initial

description by Duchenne de Boulogne described expres-

sive language delay in boys with progressive skeletal mus-

cle weakness.38 More than 150 years later, the

neurobiological underpinnings of SLD in DMD have not

been investigated. SLD is an “encompassing” term and

refers to both speech disorder (sound and word produc-

tion) and language disorder (how words are used to com-

municate). We tried to discern whether the relationships

between SLD and functional motor measures in our study

were primarily driven by speech versus language disorder

by using the age of language acquisition as an index of

language disorder. We were not able to discern an associ-

ation between 6MWD and the age of language acquisi-

tion, possibly because only 18 of the 167 participants

with data on the timing of language acquisition had a

reported speech delay.

While the strengths of our study include the large

number of corticosteroid-naive genetically defined partici-

pants with DMD and inclusion of age-appropriate func-

tional assessments, our study is not without limitations.

The first limitation is that we did not perform objective

SLD assessments in participants whose parents reported

SLD or speech delay. Such objective assessment would

provide greater distinction between speech versus lan-

guage function abnormalities in DMD. Future studies of

standardized SLD assessments would address this knowl-

edge gap. The second limitation is that the p values aris-

ing from the statistical tests were not adjusted for

multiple comparisons as our data analysis is exploratory,

and these preliminary findings require confirmation in

larger, independent cohorts.

Based on our study findings and precedent in literature,

we recommend considering including brief cognitive assess-

ments for future clinical trials in DMD such as the National

Institutes of Health Toolbox Cognitive Battery,39 digit

span,40 and standardized neurodevelopmental survey and

SLP assessment. Many of these assessments can be con-

ducted within 1 h without too much burden on clinical trial

participants. These measured variables can be incorporated

as potential covariates in final trial data analyses.

The current landscape of DMD, both from screening

and therapeutic standpoint, are advancing rapidly.

Although available antisense oligonucleotide therapy and

emerging gene therapy are not restorative of CNS pathol-

ogy in DMD, with anticipated newborn screening being

planned for implementation, we forecast that targeting

the brain in CNS is going to be the next therapeutic fron-

tier. In sum, our data support more comprehensive neu-

rodevelopmental assessment in DMD in order to better

serve skeletal health.
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